盘锦| 咸宁| 米林| 揭东| 滨州| 无为| 杭锦旗| 永春| 民丰| 綦江| 雅安| 竹山| 紫阳| 新野| 文安| 金溪| 赣州| 乐清| 柳州| 北仑| 米林| 青州| 循化| 延长| 沭阳| 青州| 科尔沁右翼中旗| 赤水| 镶黄旗| 西乌珠穆沁旗| 万山| 吉水| 上饶市| 和顺| 珠穆朗玛峰| 西和| 泽库| 中方| 武川| 新龙| 桐城| 麻栗坡| 金湾| 额尔古纳| 张家港| 鹤岗| 石柱| 昭苏| 建湖| 郫县| 响水| 新邵| 洋县| 岱岳| 登封| 紫阳| 桦川| 策勒| 濮阳| 柏乡| 迁西| 扎赉特旗| 罗江| 钟山| 长治县| 始兴| 九江市| 天安门| 新蔡| 曲靖| 汉沽| 昂仁| 鹿寨| 崇仁| 蒙城| 咸宁| 巴林左旗| 龙江| 孟村| 凌云| 加查| 大悟| 台安| 蛟河| 定远| 荥经| 马鞍山| 南昌县| 敦化| 临川| 沂南| 东胜| 甘南| 宁远| 梅里斯| 徐闻| 仁寿| 南澳| 唐海| 彭山| 东营| 墨玉| 镇江| 吉林| 龙门| 遂溪| 鲅鱼圈| 宁蒗| 朔州| 烟台| 永泰| 西昌| 万源| 巧家| 丹寨| 平利| 通州| 博爱| 崂山| 托克托| 东西湖| 同江| 友谊| 朝天| 武宁| 壤塘| 贵定| 察隅| 维西| 灵寿| 白玉| 麟游| 钟祥| 连山| 白朗| 兴平| 阳谷| 云南| 榆林| 天安门| 昔阳| 宁夏| 广汉| 湘潭县| 田阳| 涟水| 天柱| 个旧| 莱阳| 台安| 武清| 保康| 澄江| 鱼台| 维西| 清河| 陇县| 察哈尔右翼中旗| 梁山| 镇江| 梅里斯| 淮阴| 芜湖县| 龙州| 岳普湖| 莒南| 英山| 宿州| 南皮| 柯坪| 鸡泽| 资溪| 瓦房店| 新化| 威远| 交城| 宜君| 方山| 灵寿| 黟县| 稻城| 东平| 剑阁| 揭东| 惠山| 沾益| 阳朔| 临潼| 错那| 淅川| 华坪| 巫山| 泾县| 代县| 鄂州| 福泉| 呼伦贝尔| 扬中| 宣化县| 安多| 泌阳| 淳化| 泰宁| 绛县| 新宾| 洪湖| 彭山| 赞皇| 衡阳县| 睢宁| 池州| 察哈尔右翼后旗| 永春| 诸城| 新余| 淅川| 弥渡| 定陶| 响水| 高碑店| 永安| 梁子湖| 枣强| 华坪| 郫县| 兴业| 广南| 东山| 达坂城| 罗甸| 井陉| 北戴河| 大竹| 洱源| 长武| 泽普| 利川| 长岭| 泸定| 猇亭| 调兵山| 犍为| 曲水| 翁牛特旗| 大名| 临汾| 佳县| 菏泽| 泾阳| 岳阳市| 安福| 万安| 清丰| 阿瓦提| 石泉| 伊春| 贡嘎| 尉氏| 常熟| 惠山| 连南| 灵宝| 衡南| 英吉沙| 澳门赌博网址

电能测量ADC的选择方案研究分析

电子设计 ? 2018-12-19 08:59 ? 次阅读
标签:浓荫蔽日 轮盘平台 洋北镇

引 言

当今社会对电能质量的要求越来越高,国家还专门制定了电能质量的国家标准。因此,电能质量的测量越来越得到电力用户的重视。电能测量时,从电网的数据采集结果对其精度的影响起着致关重要的作用,而这其中影响最大的是把模拟信号转换为数字信号的模数转换器(ADC),往往A/D芯片的技术参数和指标就决定了整个数据采集系统的性能指标。本文就电能测量ADC的选择作了综述。

1 A/D转换器的技术参数

A/D转换器的技术参数反映了其性能特点,其主要的指标有以下几个:

(1)分辨率:分辨率反映A/D转换器对输入微小变化响应的能力,通常用数字输出最低位(LSB)所对应的模拟输入的电平值表示。

(2)精度:精度有绝对精度和相对精度两种表示方法。绝对误差:是指对应于一个数字量的实际模拟输入电压和理想的模拟输入电压之差的最大值,通常以数字量的最小有效位(LSB)的分数值来表示。相对误差:是指整个转换范围内,任一数字量所对应的模拟输入量的实际值与理论值之差,用模拟电压满量程的百分比表示。

(3)转换时间:转换时间是指完成一次A/D转换所需的时间,即由发出启动转换命令信号到转换结束信号开始有效的时间间隔,其倒数称为转换速率。例如MAX125的转换时间为3μs,其转换速率约为330多kHz。

(4)电源灵敏度:电源灵敏度是指A/D转换芯片的供电电源的电压发生变化时,产生的转换误差。一般用电源电压变化1%时相应的模拟量变化的百分数来表示。

(5)量程:量程是指所能转换的模拟输入电压范围,分单极性、双极性两种类型。

A/D转换器实际工作时,都会引入一些误差,主要包括:静态误差、孔径误差和量化误差。各种误差都是以最低有效位(LSB)作为计算单位。1 LSB定义为VREF/2n,定义中的VREF是指参考电压,而n则是模拟/数字转换器的分辨率。例如,14位模拟/数字转换器的1 LSB是VREF/16 384。

(1)静态误差:当转换一个直流信号时,静态误差可由失调误差、增益误差、非线性误差和微分非线性误差表示。

失调误差:失调误差就是实际ADC转换函数曲线与理想转换曲线间得偏移,即实际曲线发生了平移现象。

增益误差:增益误差就是满量程误差与失调误差之差。

非线性误差:非线性误差就是指转换器的实际传输特性曲线与它的平均传输特性曲线之间的最大偏差。

微分非线性误差;它表示了输出码与其相邻代码的间隔,是通过测量输入电压的变化,并转换到以LSB为单位,也就是我们通常所说的的±1LSB,±0.5LSB等指标。

(2)孔径误差:由于采样时钟或输入信号的噪声,使得采样和保持之问延迟引起的误差。 (3)量化误差:A/D变换器的量化误差决定于A/D变换器的转换特性,这种误差是由转换特性造成的,是一种原理性误差,无法消除。A/D变换器选定以后,其量化误差也随之确定了。量化误差和分辨率是统一的,量化误差是由于有限数字对模拟数字进行离散取值(量化)而引起的误差。因此,量化误差理论上为一个单位分辨率,即1LSB,提高分辨率可减少量化误差。

上述这些误差构成了A/D变换器的总误差。在考虑上述各种误差的综合影响时,A/D变换器的总误差应该用各种误差的均方根来表示。

2 A/D转换器选择的理论分析

2.1概 述

采样处理过程受ADC转换精度和转换速率的限制。一方面,对于具体的模数转换器,它的数据位所能代表的精度是由ADC的转换位数来决定的。另一方面,每一个模数转换器的转换数据在被读取之前都要有转换时间。数据位越多,则转换时间越长,相应的转换速率也就越慢。这就要求ADC的转换精度和转换速率之间做出一个折衷的解决办法。对转换精度和转换速率要求越高,模数转换越困难,根据现在的市场上可提供的和价格合理的模数转换器,作了一个大概的估计。如图1所示,它描述了ADC的转换精度与转换速率之问的一种关系。

电能测量ADC的选择方案研究分析

图1的左边上方的区域代表的是容易获得的,到右边的底部区域则几乎是不可能实现的。中间的那条实线表示的是当前市场上,在合理的价格基础上,可以提供的典型的ADC的性能。它们做为现在已有的ADC性能的代表,可以在电能质量测量中选用,例如MAX125。

2.2转换精度

对于一个已经给定转换位数的ADC,它对信号所能离散的数据位的水平是固定的。一个14位的ADC提供16 384的离散水平。如果信号为双极性的AC信号,则总的数据位通常在正极性和负极性之间平均分配。对于ADC,它们所能离散的数据水平必须足够包括预期信号的最高幅度,同时,在大小次序上、无间断的、相邻的、数据位之间必须足够的小,以保证所需要的精确度。

在谐波测量中,有代表性的基波的频率成分是含量最大的成分。因此,ADC的动态范围要求设置在能容纳100%的基本成分中间。然而,要求的精度取决于所要测量的最小幅度。对于谐波范围的测量,它最小的幅度由最小的畸变率所决定。存国家谐波测量的标准中,对于规定的畸变率,谐波测量要求在±5%的准确度。

2.3转换速率

ADC的转换速率越高,价格也越高,一般只有低频的瞬时现象才通过通用的ADC来进行测量,对于特高频的瞬时现象,则只有特殊的设备才能进行测量。而对于通常的低频瞬时现象,转换速率在10 kHz到100 kHz之间的转换器就已经足够了。

2.4采样方法

谐波监测时,常需要几路信号同时采样,笔者就做过8路信号的同步采样。一般有以下3种方法:

(1)间隔扫描方法:它是一种模拟同时采样的方法。图2说明了这种间隔扫描方法。

电能测量ADC的选择方案研究分析


? ? ? ?对于这种方法,在采样两个通道之间,存在一个非常小的时间误差ts。这个时间误差ts实际上是ADC的采样周期,它由ADC的最大转换速率所决定。例如,当使用一个采样速度为200 kHz的ADC时,则采样计时误差为5 μs。

T是扫描周期,它是一个可调整的值,它根据所测量的现象而进行设置。对于高达50次谐波的测量,最小的扫描速率为5 kHz或T≤200 μs。如果是一个200 kHz的ADC,则每一个通道的时间误差ts都应保持在5μs内,对于50次谐波(50 Hz×50=2.5 kHz即周期为400μs)来说,它的相位误差粗略为:(5μs/400μs)×360°=45°。谐波次数越高,则误差的角度就越大。如果一个ADC被多个通道所分享,则计时误差对于第一个通道和最后一个通道是不同的,它等于N×ts,,这里N等于ADC所供分享的总通道数。

(2)交替采样法:所谓交替采样法.就是进行数据采集时在被测信号的一个周期内,比如要采样256点,其中128个奇数点为电压采样点,128个偶数点为电流采样点。采电压和采电流的时差为△t=T/256(T是被测信号周期),由此引起的同相电压和电流的相位误差为360°×f×n×△t,式中f为被测信号频率,n为谐波次数。由此式可知相位误差随时差△t、谐波次数n增大而增大。

(3)同步采样法:笔者采用过同相的4路电压和4路电流的同步采样,分时传输的方法。这种方法不存在时差问题,相位差也就不存在,但要求每个通道都要有一个采样保持电路。

3设计实例

这里是一个基于DSP(TMS320C545)的电力谐波监测仪,根据以上分析,其数据采集的AD芯片对于德州仪器公司的ADS7864和MAXIM公司的MAX125都是不错的选择,这里采用了后者。因为要采样A,B,C三相电压和电流,共6路模入通道,为了保证6路工频信号之间保持正确的相位关系,应该同步采样数据,而一片MAX125最多只能转换4通道差动信号,所以用了两片MAX125,其数据采集接口框图如图3所示。

电能测量ADC的选择方案研究分析

两片MAX125 a和b设置成3路差动顺序采样模式。每片MAX125在模拟信号输入前都接有信号调理电路,其作用是对电网高压进行隔离和抗混叠滤波,并将输入电平转换成芯片正常工作时的电压,这部分在图中没有表示出来。本装置在进行谐波分析时,为了达到需要的测量精度,6路模入信号要求在每个工频周期内的采样点不少于1 024个点,然后留下尽量均匀的512点,再进行快速傅立叶变换,为了保证精度,只取前50次谐波。这就要求6路信号转换的时间得小于20 ms/1 024≈19.5 μs且要留足够的余量。因为MAX125每个通道的信号转换需要3μs,则每片MAX125三个通道依次转换需要3×3 μs=9μs。所以这里两片MAX125要并联连接,同时启动它们,使得它们同时完成3路电压和3路电流的采样保持和转换,只需要3×3μs=9 μs的时间,再加上读取数据的时间,比起19.5μs来,还有很大的余量,当然如果使两片MAX125采用"串联"工作方式,其A/D转换时间就是18μs也小于19.5μs,但余量不够。

TMS320C545的I/O工作电压是3.3 V,MAX125的数字端工作电压是5 V,所以它们之间必须加由5 V转换到3.3 V的电平转换芯片,反过来,由TMS320C545送到MAX125的信号是在MAX125的允许范围内,不会造成损坏,所以就不必进行电平转换了。

4结 论

电能测量时,AD芯片对其精度的影响起着致关重要的作用。测量电能质量的ADC必须有足够的动态范围去满足信号的最高的幅度,同时又要保持足够的位数去获得必须的准确度。而且,它的采样速率必须足够的高,以便于采样信号中的最高频率成分。

热门推荐

收藏 人收藏
分享:

评论

相关推荐

【转】科普:不同颜色的电线代表啥?

国内标准 一般电箱中有五种不同颜色的电线,分别对应为: 黄色:三相电路中的L1相,即A相 绿色:三相电路中的L2相,即B相...

发表于 12-17 22:43 ? 54次 阅读
【转】科普:不同颜色的电线代表啥?

差分ADC中不同电阻容差对THD性能的影响

本应用笔记介绍了输入端相同值电阻的不同容差如何改变全差分ADC的THD性能。电阻器的成本随着容差的每个较低增量而显着变化...

发表于 12-17 22:13 ? 47次 阅读
差分ADC中不同电阻容差对THD性能的影响

PSOC4 OPAMP启动时间

我注意到,接通电源大约需要500毫秒,以从PSoC4的内部Opamp(作为电压跟随器配置)获得有效输出。 在这个(长)时间之后的进...

发表于 12-17 16:33 ? 34次 阅读
PSOC4 OPAMP启动时间

192W高效双相同步升压转换器

描述       PMP9403 是一种采用 LM5122 控制器 IC 的高效双相同步升压转换器。此设计接受 9Vin 至...

发表于 12-17 16:21 ? 56次 阅读
192W高效双相同步升压转换器

GSPS ADC的最理想时钟源高速数字转换器应用平台

描述    ADC12D1600RFRB 参考设计提供了展示高速数字转换器应用(其中整合了时钟、电源管理和信号处理)的平...

发表于 12-17 16:16 ? 51次 阅读
GSPS ADC的最理想时钟源高速数字转换器应用平台

工作频率为1MHz的高效12W隔离型反激式转换器

描述              此隔离型反激式转换器的工作输入电压为 36Vdc - 57Vdc,提供 1...

发表于 12-17 16:14 ? 62次 阅读
工作频率为1MHz的高效12W隔离型反激式转换器

通用85-265VAC输入和12V/60W额定输出的PSR反激参考设计

描述        此设计使用面向 12V/60W DCM 反激式转换器的 PSR 控制器 UCC28710。UCC28710 ...

发表于 12-17 16:08 ? 64次 阅读
通用85-265VAC输入和12V/60W额定输出的PSR反激参考设计

高压线路和12V/2A输出隔离式反激交流至直流转换器

描述 此电源参考设计使用 LM5021 交流/直流电流模式 PWM 控制器。在隔离式反激拓扑中将开关频率编程为 130KHz,采用最...

发表于 12-17 15:57 ? 68次 阅读
高压线路和12V/2A输出隔离式反激交流至直流转换器

板子上的芯片经常烧坏

现在遇到的情况是:板子上的一块电机芯片经常烧坏,用直流电源给整个板子供电,板子工作正常。用开关电源给整个板子供电,用了一...

发表于 12-17 15:01 ? 73次 阅读
板子上的芯片经常烧坏

请问驱动脚被驱动到地,怎么理解?

MOS管驱动芯片里有句话: preventing the output pin from being driven below ground(输出脚被驱动到地下),为什么驱动信号...

发表于 12-17 13:36 ? 58次 阅读
请问驱动脚被驱动到地,怎么理解?

基于AX6066+A433LED驱动电路设计

最终,初始线圈的峰值电流是要受到限制的,因为该电流必须要通过AX6066。对峰值电流的限制也就限制了....

的头像 电子发烧友网 发表于 12-17 10:38 ? 163次 阅读
基于AX6066+A433LED驱动电路设计

ICS-1000Z智能显示控制器的数据和使用说明书免费下载

 本计量器具是在输送带运行过程中称量物重的自动计量装置,适用于各种散状的动态连续计量和配料,本公司生....

发表于 12-14 08:00 ? 26次 阅读
ICS-1000Z智能显示控制器的数据和使用说明书免费下载

高频大功率整流电源选型方案

高频电源主流选型方案:整流桥国产整流桥技术已经成熟大多高频整流电源厂商都选用实菱,质量好,价格便宜。....

的头像 薄膜电容 发表于 12-13 14:51 ? 81次 阅读
高频大功率整流电源选型方案

I2C和电源的关系

如果此时你回去看最上面的第一张图,那么你就发现图中有一个I2C Expander,对了,问题就出自这....

的头像 EDA365 发表于 12-13 10:39 ? 314次 阅读
I2C和电源的关系

探讨通过ADC实现功能安全的潜力

这是一种单IC解决方案,只需极少的外部元件即可运行功能安全特性。

的头像 亚德诺半导体 发表于 12-13 10:25 ? 403次 阅读
探讨通过ADC实现功能安全的潜力

PIC单片机ADC的编程设计

#include __CONFIG(0X1F71); #define uchar uns....

发表于 12-12 14:26 ? 109次 阅读
PIC单片机ADC的编程设计

如何降低模数转换器的性能

开关电源(DC-DC转换器)真的会降低模数转换器的性能吗?

的头像 电机控制设计加油站 发表于 12-12 14:17 ? 171次 阅读
如何降低模数转换器的性能

ADC和DAC使用中要注意的要点

无论ADC还是DAC都是通过跟一个基准(电压或电流)进行比较而得到相应的结果的,如果基准发生了偏差,....

的头像 电子发烧友网工程师 发表于 12-12 14:04 ? 288次 阅读
ADC和DAC使用中要注意的要点

LM2596降压开关稳压器的数据手册免费下载

LM2596系列稳压器是单片集成电路,非常适合于降压开关调节器(降压转换器)的简便设计。本系列的所有....

发表于 12-12 08:00 ? 38次 阅读
LM2596降压开关稳压器的数据手册免费下载

凌力尔特的隔离器μModule ?转换器是断开接地环路紧凑的解决方案

当需要超过12V时,图2中的相同电路也可用于提高输出电压范围。通过调整反馈电阻以提供7.5V标称输出....

的头像 电机控制设计加油站 发表于 12-11 10:46 ? 388次 阅读
凌力尔特的隔离器μModule ?转换器是断开接地环路紧凑的解决方案

AP2000升压DCDC转换器芯片资料免费下载

AP2000是同步的,固定频率,升压DC/DC转换器,在6引脚SOT封装中提供高效率。能够以100m....

发表于 12-11 08:00 ? 31次 阅读
AP2000升压DCDC转换器芯片资料免费下载

什么是通信电源

通信电源是整个通信网络的关键基础设施,但是通信电源在整个通信行业中占的比例并不大。电信运营商在电源产....

的头像 发烧友学院 发表于 12-10 16:50 ? 318次 阅读
什么是通信电源

浅析电磁流量计工程应用中的要点

在石化、化工、电力、冶金、市政、制药等行业,流量测量的技术难度和复杂程度都相当高,研究流量测量对于提....

的头像 工控资料窝 发表于 12-10 13:43 ? 188次 阅读
浅析电磁流量计工程应用中的要点

银欣发布世界上最小千瓦级电源 长度仅为14厘米

近日,银欣发布了号称世界上最小的千瓦级电源ST1200-PTS和ST1000-PTS,两款都是全模块....

发表于 12-10 11:32 ? 108次 阅读
银欣发布世界上最小千瓦级电源 长度仅为14厘米

单片机如何进行故障检查及常见问题的解决办法资料概述

观察单片机系统时钟或其他模块(如定时器或ADC)是否存在并正常工作以确保其逻辑操作。最简单的方法是将....

的头像 单片机精讲吴鉴鹰 发表于 12-08 11:35 ? 586次 阅读
单片机如何进行故障检查及常见问题的解决办法资料概述

100Msps的数字示波器的制作来做一个简单的案例分析

第一个问题:选用多少位数的ADC?8、10、12、14、16位?ADC的精度的选用要和前面的模拟信号....

的头像 电子发烧友网工程师 发表于 12-08 09:49 ? 221次 阅读
100Msps的数字示波器的制作来做一个简单的案例分析

通信电源的特点

本视频主要详细介绍了通信电源的特点,分别有输入电网范围宽、直流输出电压连续可调、稳压精度高、输出杂音....

的头像 发烧友学院 发表于 12-07 16:31 ? 197次 阅读
通信电源的特点

如何从这些品类繁多的器件中选择适合自己项目的器件?

对信号幅度的量化要足够的精细,也就是要达到一定的细致程度,比如你向一个姑娘介绍对象,说一个身高1.7....

的头像 电子发烧友网工程师 发表于 12-07 10:23 ? 287次 阅读
如何从这些品类繁多的器件中选择适合自己项目的器件?

TI推出四种微型高精度数据转换器 每种均具有业界同类产品中最小尺寸

德州仪器(TI)今日推出四种微型高精度数据转换器,每种转换器均具有业界同类产品中最小尺寸。新数据转换....

发表于 12-07 09:36 ? 99次 阅读
TI推出四种微型高精度数据转换器 每种均具有业界同类产品中最小尺寸

简析斩波容性放大器的工作原理

ADI专利的容性可编程增益放大器(PGA)相比传统的阻性PGA具有更佳的性能,包括针对模拟输入信号的....

的头像 电机控制设计加油站 发表于 12-07 09:26 ? 228次 阅读
简析斩波容性放大器的工作原理

USBType-C电源设计面临哪些问题

到目前为止,移动产业依靠的是专有的快速充电技术,使用USB Micro B连接器。但是最近锂电池的事....

发表于 12-06 14:39 ? 140次 阅读
USBType-C电源设计面临哪些问题

光敏电阻的基础知识介绍

光敏电阻常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。这些制作材料具有在特定波长....

的头像 电子发烧友网工程师 发表于 12-06 13:38 ? 285次 阅读
光敏电阻的基础知识介绍

锂电池的特性寿命和充放周期的详细资料说明

 对于现代人来说,手机早已变成“伴侣级”的生活必备品,玩得兴起没电了,简直是“晴天霹雳”。感觉现在的....

发表于 12-06 08:00 ? 137次 阅读
锂电池的特性寿命和充放周期的详细资料说明

FE1.1s和FE2.1 USB2.0 Hub中英文使用数据手册及参考电路合集免费下载

FE1.1s是高度集成, 高质量, 高性能, 低能耗, 同时还是USB 2.0 高速4端口集线的低成....

发表于 12-06 08:00 ? 50次 阅读
FE1.1s和FE2.1 USB2.0 Hub中英文使用数据手册及参考电路合集免费下载

RB-450X型自动裁缆机操作手册的资料免费下载

本操作手册向用户提供了裁缆机必要的信息及操作使用步骤, 建议用户在使用本机器前,仔细阅读此说明,在需....

发表于 12-05 17:18 ? 45次 阅读
RB-450X型自动裁缆机操作手册的资料免费下载

银欣科技推出全新PC电源 官方称这款电源为世界上最小的千瓦级PC电源

近日,PC外设厂商SilverStone(银欣科技)推出了1款全新的PC电源——Strider Pl....

发表于 12-05 14:47 ? 109次 阅读
银欣科技推出全新PC电源 官方称这款电源为世界上最小的千瓦级PC电源

STC系列单片机程序烧录方法

选择通讯波特率,单片机目标板上有晶振的,这一项基本可以不用理会,系统会自动适应合适的波特率。如果目标....

的头像 单片机精讲吴鉴鹰 发表于 12-05 09:33 ? 375次 阅读
STC系列单片机程序烧录方法

声卡的简介和工作原理的详细资料说明

声卡 (Sound Card):声卡是多媒体技术中最基本的组成部分,是实现声波/数字信号相互转换的一....

发表于 12-05 08:00 ? 43次 阅读
声卡的简介和工作原理的详细资料说明

ADE7755集成电路ADC的中文资料免费下载

D7755是一种高准确度电能测量集成电路,其技术指标超过了IEC1036准确度的指标要求。

发表于 12-05 08:00 ? 45次 阅读
ADE7755集成电路ADC的中文资料免费下载

如何使用状态机进行LTC1196串并转换

利用状态机等设计将LTC1196(ADC)的穿行输出数据转换成并行数据的转换电路,ADC的时钟由转换....

发表于 12-03 08:00 ? 40次 阅读
如何使用状态机进行LTC1196串并转换

锂电池的特性寿命及充放周期等详细资料介绍

对于现代人来说,手机早已变成“伴侣级”的生活必备品,玩得兴起没电了,简直是“晴天霹雳”。感觉现在的电....

发表于 12-03 08:00 ? 119次 阅读
锂电池的特性寿命及充放周期等详细资料介绍

Silicon Labs电容触摸系列MCU的CDC工作原理

现在的电子产品中,触摸感应技术日益受到更多关注和应用,并不断有新的技术和IC面世。与此同时,高灵敏度....

发表于 12-02 10:01 ? 114次 阅读
Silicon Labs电容触摸系列MCU的CDC工作原理

BLDC HALL换相补偿问题的详细图文资料分析

换相电流补偿我所了解到的有两种方式 1、换相后立即将PWM输出设为为最大或者是直接设置为高电平(P....

发表于 11-30 17:14 ? 63次 阅读
BLDC HALL换相补偿问题的详细图文资料分析

基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

电源设计工程师通常在汽车系统中使用一些DC/DC降压变换器来为多个电源轨提供支持。然而,在选择这些类....

发表于 11-30 13:48 ? 777次 阅读
基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

联想thinkplus口红电源高清图赏

11月6日,联想发布了一款thinkplus口红电源新品,让你的笔记本电源如口红版大小,其售价299....

的头像 39度创意研究所 发表于 11-30 11:49 ? 670次 阅读
联想thinkplus口红电源高清图赏

如何进行一个微弱信号检测的前置放大电路的设计

针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构....

发表于 11-30 10:38 ? 75次 阅读
如何进行一个微弱信号检测的前置放大电路的设计

PCB设计“怎么摆”和“怎么连”

高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;....

的头像 电子工程技术 发表于 11-30 09:27 ? 447次 阅读
PCB设计“怎么摆”和“怎么连”

单片机按键设计的四多种方法和改进方法详细资料说明

 在单片机系统里,按键是常见的输入设备,在本文江介绍几种按键硬件、软件设计方面的技巧。一般的在按键的....

发表于 11-30 08:00 ? 71次 阅读
单片机按键设计的四多种方法和改进方法详细资料说明

了解隔离设计,就在这里

集成隔离式DC-DC转换器的出现,提供了一个紧凑、易用的解决方案,并具有文档化的安全认证,使得上述诸....

的头像 电机控制设计加油站 发表于 11-29 17:17 ? 625次 阅读
了解隔离设计,就在这里

如何使用STM8官方库控制BLDC的详细资料说明

本文档的主要内容详细介绍的是如何使用STM8官方库控制BLDC的详细资料说明免费下载。

发表于 11-29 16:43 ? 63次 阅读
如何使用STM8官方库控制BLDC的详细资料说明

STM32单片机的ADC多通道采样

这里使用的是3362电位器(10K),即用STM32来测量PB0和GND两端的电压,这样的电路设计比....

发表于 11-29 16:12 ? 115次 阅读
STM32单片机的ADC多通道采样

ADC通道转换对IO引脚有什么的影响

单片机的模拟功能可与数字电路部分和运行固件部分进行复杂交互。如果模拟电路特性不能得到很好的理解,那么....

发表于 11-28 08:00 ? 54次 阅读
ADC通道转换对IO引脚有什么的影响

STM32单片机ADC的模拟看门狗的测试

ADC的模拟看门狗用于检查电压是否越界。他又上下两个边界,可分别在寄存器ADC_HTR和ADC_LT....

发表于 11-27 16:49 ? 127次 阅读
STM32单片机ADC的模拟看门狗的测试

开关电源设计如何防止初次上电“炸机”?

如果通电后白炽灯一直亮,或者白炽灯在间断的亮-不亮-亮的循环状态,说明开关电源内部有大电流,此时可关....

的头像 Torex产品资讯 发表于 11-27 14:25 ? 761次 阅读
开关电源设计如何防止初次上电“炸机”?

安川信号转换器的选型手册和数据资料免费下载

接口接力系列是用于连接编码器和伺服系统的信号转换器。从简单的信号水平转换到复杂的A / D /,D ....

发表于 11-27 08:00 ? 38次 阅读
安川信号转换器的选型手册和数据资料免费下载

MK7A23P高性能8位微控制器的中文数据手册免费下载

首先很高兴遇见您!能见到这颗芯片说明我们很有缘份,今天我做了一个决定,我决定只卖这颗芯片,为什么呢?....

发表于 11-27 08:00 ? 44次 阅读
MK7A23P高性能8位微控制器的中文数据手册免费下载

MK7A23P高性能8位微控制器的英文数据手册免费下载

首先很高兴遇见您!能见到这颗芯片说明我们很有缘份,今天我做了一个决定,我决定只卖这颗芯片,为什么呢?....

发表于 11-27 08:00 ? 42次 阅读
MK7A23P高性能8位微控制器的英文数据手册免费下载

竞争激烈的电源管理IC诱人市场

上个月的电源管理IC市场迎来两件大事,一是Apple公司于10月11日宣布将以6亿美元取得Dialo....

的头像 电子发烧友网工程师 发表于 11-26 16:18 ? 559次 阅读
竞争激烈的电源管理IC诱人市场

SN74GTLPH16945 16 位 LVTTL 到 GTLP 总线收发器

SN74GTLPH16945是一款中等驱动的16位总线收发器,可提供LVTTL到GTLP和GTLP到LVTTL的信号电平转换。它被划分为两个8位收发器。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准TTL或LVTTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。 通常情况下,B端口以GTLP信号电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全适用于使用I off 的上电插入应用,上电3状态,BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数据,并允许真正的实时插入功能。 该GTLP器件具有TI-OPC电路,可有效限制由于背板不正确,卡分布不均匀或在低到高信号转换期间出现空插槽而导致的...

发表于 10-16 11:16 ? 4次 阅读
SN74GTLPH16945 16 位 LVTTL 到 GTLP 总线收发器

SN74GTLP2033 具有独立 LVTTL 端口和反馈路径的 8 位 LVTTL-GTLP 可调节边沿速率寄存收发器

SN74GTLP2033是一款高驱动,8位,3线注册收发器,可提供反向LVTTL至GTLP和GTLP至LVTTL信号级翻译。该器件支持透明,锁存和触发器数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径,功能与SN74FB2033相同。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( LVTTL接口具有5 V容差 高驱动GTLP漏极开路输出(100 mA) LVTTL输出(\ x9624 mA /24 mA) 可变边沿速率控制(ERC)输入选择GTLP上升和下降时间,以实现分布式负载中的最佳数据传输速率和信号完整性 I off ,上电3状态和BIAS V CC 支持实时插入 分布式V CC 和GND引脚最小化高速开关噪声锁存-Up性能超过每JESD 78 mA,Class II ESD保护超过JESD 22 2000-V人体模型(A114-A) 1000 -V充电设备型号(C101) OEC,TI-OPC和Widebus是Texas Instruments的商标。 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器/转换器...

发表于 10-16 11:16 ? 0次 阅读
SN74GTLP2033 具有独立 LVTTL 端口和反馈路径的 8 位 LVTTL-GTLP 可调节边沿速率寄存收发器

SN74GTLPH1645 16 位 LVTTL 到 GTLP 可调节边沿速率总线收发器

SN74GTLPH1645是一款高驱动,16位总线收发器,可提供LVTTL到GTLP和GTLP到LVTTL的信号电平转换。它被划分为两个8位收发器。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( A端口数据输入的总线保持 分布式V CC 和GND引脚最大限度地降低高速开关噪声 闩锁性能超过100 mA根据JESD 78,Class II OEC,TI-OPC和Widebus是Texas Instruments的商标。 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器/转换器 ? Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) tpd @ Nom Voltage (Max) (ns) IOL (Max) (mA) IOH (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package ? var link = "zh_CN_folder_p_quick_link_description_features_parametrics"; com.TI...

发表于 10-16 11:16 ? 4次 阅读
SN74GTLPH1645 16 位 LVTTL 到 GTLP 可调节边沿速率总线收发器

SN74GTLP1395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP1395是两个1位,高驱动,3线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL信号 - 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( GTLP是德州仪器Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3的衍生产品。 SN74GTLP1395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF < /sub> = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,文献编号SCEA019和BTL应用中的 GTLP ,文献编号SCEA017。 通常,B端口工...

发表于 10-16 11:16 ? 5次 阅读
SN74GTLP1395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTL16616 具有缓冲时钟输出的 17 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74GTL16616是一个17位的UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL信号电平转换的收发器。组合的D型触发器和D型锁存器允许透明,锁存,时钟和时钟使能的数据传输模式,与'16601功能相同。此外,该器件还提供了GTL /GTL +信号电平(CLKOUT)的CLKAB副本以及GTL /GTL +时钟转换为LVTTL逻辑电平(CLKIN)。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(...

发表于 10-16 11:16 ? 4次 阅读
SN74GTL16616 具有缓冲时钟输出的 17 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74FB1653 具有缓冲时钟线路的 17 位 LVTTL/BTL 通用存储收发器

SN74FB1653包含一个带缓冲时钟的8位和9位收发器。时钟和收发器设计用于在LVTTL和BTL环境之间转换信号。该器件专为与IEEE Std 1194.1-1991(BTL)兼容而设计。 A端口工作在LVTTL信号电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC (5 V)通常小于2.5 V时,A输出处于高阻态。 B端口工作于BTL信号电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB)\。当OEB为低电平时,OEB \为高电平,或者V CC (5 V)通常小于2.5 V,B端口关闭。 时钟选择( 2SEL1和2SEL2)输入用于配置TTL到BTL时钟路径和延迟(参见 MUX-MODE DELAY 表)。 BIAS V CC当未连接V CC (5 V)时,在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置发生器的电源输入。 V REF 是内部产生的电压源。建议将V REF 与0.1μF电容去耦。 当此设备从AI到A0以大于50的频率运行时,应使用增强的散热技术频率大于100 MHz时,或从AI到B \或B \到A0。 特性 与IE...

发表于 10-16 11:16 ? 0次 阅读
SN74FB1653 具有缓冲时钟线路的 17 位 LVTTL/BTL 通用存储收发器

SN74GTL2010 10 位钳位电压

GTL2010提供10个NMOS传输晶体管(Sn和Dn),共栅极(G REF )和参考晶体管( S REF 和D REF )。开关的低导通电阻允许以最小的传播延迟进行连接。由于不需要方向控制引脚,该器件允许双向电压转换任何电压(1 V至5 V)至任何电压(1 V至5 V)。 当Sn或Dn端口为低电平时,钳位处于ON状态,Sn和Dn端口之间存在低电阻连接。假设Dn端口上的电压较高,当Dn端口为高电平时,Sn端口上的电压限制为参考晶体管设置的电压(S REF )。当Sn端口为高电平时,通过上拉电阻将Dn端口拉至V CC 。 GTL2010中的所有晶体管都具有相同的电气特性,在电压或传播延迟方面,从一个输出到另一个输出的偏差最小。这提供了优于分立晶体管电压转换解决方案的匹配,其中晶体管的制造不对称。在所有晶体管相同的情况下,参考晶体管(S REF /D REF )可以位于其他十个匹配的Sn /Dn晶体管中的任何一个上,从而实现更简单的电路板布局。具有集成ESD电路的转换器晶体管可提供出色的ESD保护。 特性 提供无方向控制的双向电压转换 允许电压电平从1 V升至5 V 提供与GTL,GTL +,LVTTL /TTL和5-V CM...

发表于 10-16 11:16 ? 6次 阅读
SN74GTL2010 10 位钳位电压

SN74FB2040 8 位、TTL/BTL 收发器

SN74FB2040是一款8位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。 B \ port以BTL信号电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为高电平且OEB \为低电平时,B \ n端口有效并反映A输入引脚上存在的数据的反转。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL信号电平并有独立的输入和输出引脚。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 引脚TMS,TCK,TDI和TDO均为非功能性的,即不适用于IEEE Std 1149.1(JTAG)测试总线。 TMS和TCK未连接,TDI短接至TDO。 BIAS V CC 在V CC时在BTL输出上建立1.62 V至2.1 V之间的电压未连接。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC < /sub>引脚最小化实时插...

发表于 10-16 11:16 ? 4次 阅读
SN74FB2040 8 位、TTL/BTL 收发器

SN74GTL16612 18 位 LVTTL 至 GTL/GTL+ 通用总线收发器

'GTL16612器件是18位UBT ??提供LVTTL到GTL /GTL +和GTL /GTL +到LVTTL信号电平转换的收发器。它们结合了D型触发器和D型锁存器,可实现与'16601功能相同的透明,锁存,时钟和时钟使能模式的数据传输。这些器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(

发表于 10-16 11:16 ? 8次 阅读
SN74GTL16612 18 位 LVTTL 至 GTL/GTL+ 通用总线收发器

SN74FB2033A 8 位 TTL/BTL 寄存收发器

SN74FB2033A是一款8位收发器,在TTL电平A端口上具有分离输入(AI)和输出(AO)总线。通用I /O,集电极开路B \ n端口工作在背板收发器逻辑(BTL)信号电平。 每个方向的数据流逻辑元素由两个模式输入(B-to-A的IMODE1和IMODE0,A-to-B的OMODE1和OMODE0)配置为缓冲区,D-类型触发器或D型锁存器。在缓冲模式下配置时,反向输入数据出现在输出端口。在触发器模式下,数据存储在相应时钟输入(CLKAB /LEAB或CLKBA /LEBA)的上升沿。在锁存模式下,时钟输入用作高电平有效透明锁存器使能。 无论选择何种逻辑元素,B-to-A方向的数据流都由LOOPBACK输入进一步控制。当LOOPBACK为低电平时,B \ -port数据是B-to-A输入。当LOOPBACK为高电平时,所选A-to-B逻辑元件的输出(反转之前)是B-to-A输入。 AO端口启用/-disable控件由OEA提供。当OEA为低电平或V CC 小于2.5 V时,AO端口处于高阻态。当OEA为高电平时,AO端口处于活动状态(逻辑电平为高或低)。 B \ port由OEB和OEB \控制。如果OEB为低电平,OEB \为高电平,或者V CC 小...

发表于 10-16 11:16 ? 5次 阅读
SN74FB2033A 8 位 TTL/BTL 寄存收发器

SN74FB2031 9 位 TTL/BTL 地址/数据收发器

SN74FB2031是一款9位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \端口以BTL信号电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口以TTL信号电平工作。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 针对四线IEEE Std 1149.1(JTAG)测试总线分配引脚,尽管目前还没有计划发布JTAG特性版本。 TMS和TCK未连接,TDI与TDO短路。 当V CC 未连接时,BIAS V CC 在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置发生器的电源输入。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC < /sub>最小化实时插入或拔出期间...

发表于 10-16 11:16 ? 4次 阅读
SN74FB2031 9 位 TTL/BTL 地址/数据收发器

SN74FB1650 18 位 TTL/BTL 通用存储收发器

SN74FB1650包含两个9位收发器,用于在TTL和背板收发器逻辑(BTL)环境之间转换信号。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \ n端口工作在BTL信号电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL信号电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 BIAS V CC 建立当未连接V CC 时,BTL输出上的电压介于1.62 V和2.1 V之间。 BG V CC 和BG GND是电源输入用于偏置发生器。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA BIAS V CC 最大限度地减少实时插入或拔出期间的信号失真 上电和断电期间的高阻抗状态 B \ - 端口偏置网络预先连接器和PC跟踪到BTL高电平电压 TTL输入结构包含有效在线终止时紧急援助 参数 与其它产品相...

发表于 10-16 11:16 ? 7次 阅读
SN74FB1650 18 位 TTL/BTL 通用存储收发器

SN10KHT5574 具有 D 类边沿触发器和三态输出的八路 ECL 至 TTL 转换器

这个八进制ECL到TTL转换器旨在提供10KH ECL信号环境和TTL信号环境之间的有效转换。该器件专门用于提高ECL-to-TTL CPU /总线导向功能的性能和密度,如存储器地址驱动器,时钟驱动器和面向总线的接收器和发送器。 八SN10KHT5574的触发器是边沿触发的D型触发器。在时钟正跳变时,Q输出设置为在D输入端设置的逻辑电平。 缓冲输出使能输入( OE ”可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗第三状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 输出使能输入 OE < /span>不会影响触发器的内部操作。输出关闭时,可以保留旧数据或输入新数据。 SN10KHT5574的特点是在0°C至75°C的温度范围内工作。 特性 10KH兼容 ECL时钟和TTL控制输入 流通式架构优化PCB布局 中心引脚V CC ,V EE 和GND配置最大限度地降低高速开关噪声 封装选项包括“小”概述“包装和标准塑料DIP 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器/转换器 ? Technology Family VCC (Min) (V) ...

发表于 10-16 11:16 ? 6次 阅读
SN10KHT5574 具有 D 类边沿触发器和三态输出的八路 ECL 至 TTL 转换器

SN74GTLPH1655 16 位 LVTTL 到 GTLP 可调节边缘速率通用总线收发器

SN74GTLPH1655是一款高驱动,16位UBT ??提供LVTTL到GTLP和GTLP到LVTTL信号电平转换的收发器。它被划分为两个8位收发器,并允许透明,锁存和时钟模式的数据传输。该器件提供以LVTTL逻辑电平工作的卡与以GTLP信号电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( 可变边沿速率控制(ERC)输入为分布式负载中的最佳数据传输速率和信号完整性选择GTLP上升和下降时间 I off ,上电三态和BIAS V CC 支持实时插入 A端口数据输入上的总线保持 分布式V CC < /sub>和GND引脚最大限度地降低高速开关噪声 闩锁性能超过100 JESD 78,Class II ESD保护超过JESD 22 2000-V人体模型(A114-A) 200-V机器型号(A115-A) 1000-V充电设备模型(C101) OEC,TI,TI-OPC,UBT和Widebus是德州仪器公司的商标。 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器/转换器 ? Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ N...

发表于 10-16 11:16 ? 11次 阅读
SN74GTLPH1655 16 位 LVTTL 到 GTLP 可调节边缘速率通用总线收发器

SN74GTLP21395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP21395是两个1位,高驱动,3线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL信号 - 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( Y输出设计用于吸收高达12 mA的电流,包括等效的26- 电阻器可减少过冲和下冲。 GTLP是德州仪器(TI)衍生的Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3。 SN74GTLP21395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF < /sub> = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,...

发表于 10-16 11:16 ? 2次 阅读
SN74GTLP21395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP1394 具有独立 LVTTL 端口、反馈路径和可选择极性的 2 位 LVTTL 到 GTLP 可调节边沿速率总线 Xcvrs

SN74GTLP1394是一款高驱动,2位,3线总线收发器,可提供LVTTL至GTLP和GTLP至LVTTL信号 - 级别翻译。它允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP信号电平的背板之间的高速接口,专门设计用于与德州仪器1394背板物理层控制器配合使用。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)信号电平。 通常情况下,B端口以GTLP信号电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全指定用于使用I off 的上电插入应用,上电3 -state和BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数...

发表于 10-16 11:16 ? 22次 阅读
SN74GTLP1394 具有独立 LVTTL 端口、反馈路径和可选择极性的 2 位 LVTTL 到 GTLP 可调节边沿速率总线 Xcvrs

SN74GTL1655 可带电插入 16 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74GTL1655是高驱动(100 mA),低输出阻抗(12 )16位UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL信号电平转换的收发器。该器件被划分为两个8位收发器,并结合了D型触发器和D型锁存器,以实现类似于?? 16501功能的透明,锁存和时钟数据传输模式。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +信号电平工作的背板之间的接口。高速操作是减少输出摆幅(

发表于 10-16 11:16 ? 26次 阅读
SN74GTL1655 可带电插入 16 位 LVTTL 到 GTL/GTL+ 通用总线收发器

SN74GTL2007 12 位 GTL-/GTL/GTL+ 至 LVTTL 转换器

SN74GTL2007是一个12位转换器,用于连接3.3V LVTTL芯片组I /O和Xeon。处理器GTL- /GTL /GTL + I /O.该器件专为双处理器应用中的平台运行状况管理而设计。 特性 作为GTL- /GTL /GTL +运行至LVTTL或LVTTL至GTL- /GTL /GTL +转换器 系列终止TTL输出30 闩锁测试完成JEDEC标准JESD 78 根据JESD测试的ESD性能22 2000-V人体模型(A114-B,II类) 200-V机器模型(A115- A) 1000-V充电设备型号(C101) 所有商标均为其各自所有者的财产。 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器/转换器 ? Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) tpd @ Nom Voltage (Max) (ns) IOL (Max) (mA) IOH (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package ? var link = "zh_CN_folder_p_quick_link_description_features_parametri...

发表于 10-16 11:16 ? 33次 阅读
SN74GTL2007 12 位 GTL-/GTL/GTL+ 至 LVTTL 转换器

SN74GTL3004 可选 GTL 电压基准

SN74GTL3004提供可选的GTL参考电压(GTL V REF )。可以使用S0和S1选择引脚调整GTL V REF 的值。 S0和S1引脚包含毛刺抑制电路,具有出色的抗噪性。悬空时,S0和S1控制输入引脚具有100kμ上拉,将GTL V REF 默认值设置为0.67×V TT 比例(S0 = 1且S1 = 1)。 特性 V DD 范围:3.0 V至3.6 V V TT < /sub>范围:1 V至1.3 V 提供可选择的GTL V REF 0.615×V TT 0.63×V TT 0.65×V TT 0.67×V TT ±1%电阻比容差 环境温度范围:-40°C至85°C ESD保护超过以下水平测试(按JESD-22测试): 2500-V人体模型(A114-B,II类) 250-V机器模型(A115) -A) 1500 V充电设备型号(C101) 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器/转换器 ? Technology Family VCC (Min) (V) VCC (Max) (V) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package ...

发表于 10-16 11:10 ? 31次 阅读
SN74GTL3004 可选 GTL 电压基准

SN74GTL2014 4 位 LVTTL 至 GTL 收发器

SN74GTL2014是一款4通道转换器,用于连接3.3V LVTTL芯片组I /O与Xeon处理器GTL- /GTL /GTL + I /O。 SN74GTL2014在所有端子上集成了ESD保护单元,并且采用TSSOP封装(5.0mm×4.4mm)。器件在自然通风环境下的额定工作温度范围为-40°C至85 °C。要了解所有可用封装,请见数据表末尾的可订购产品附录。 特性 可用作GTL- /GTL /GTL +至LVTTL转换器或LVTTL至GTL- /GTL /GTL +转换器 < li> LVTTL输入最高可承受5.5V电压,允许直接访问TTL或5V CMOS GTL输入/输出工作电压高达3.6V,这使得器件可在高压开漏应用中使用 VREF可降至0.5V,以实现低电压CPU使用率 支持局部断电 锁断保护超过500mA,符合JESD78规范的要求 封装选项:TSSOP14 -40°C至+ 85°C工作温度范围 所有端子上具备静电放电(ESD)保护 2000V人体模型(HBM),JESD22-A114 1000V充电器件模型(CDM),IEC61000-4-2 应用< /h2> 服务器 基站 有线通信 所有商标均为其各自所有者的财产。 参数 与其它产品相比?GTL/TTL/BTL/ECL 收发器...

发表于 10-16 11:10 ? 19次 阅读
SN74GTL2014 4 位 LVTTL 至 GTL 收发器
汇航路 江西省余江县 王辛庄村 戴家沙浯 蒙古族
鲍庄村 乐山市 西郊宾馆社区 东方大学城二期体育场 宁阳县
斗地主规则 澳门百老汇赌场官网 澳门拉斯维加斯线上网站 澳门威尼斯人娱乐网址 番摊游戏娱乐
澳门威尼斯人平台 分分彩软件 澳门威尼斯人官网 澳门大富豪游戏 澳门星际
澳门地下赌场官网 重庆时时彩网址 现金网导航 葡京网上赌场 澳门葡京官网
澳门威尼斯人官网 澳门威尼斯人官网 澳门威尼斯人官网 澳门威尼斯人官方网址 澳门赌博网站